66 research outputs found

    SEASONAL VARIABILITY OF AEROSOL COMPOSITION IN SWITZERLAND: A MODELLING STUDY

    Get PDF
    In this study, we applied the MM5/CAMx model system over Switzerland for winter and summer periods in 2006. The focus is on the formation and transport of aerosols and the contribution of various sources to the aerosol formation both in winter and summer seasons. Our model system uses three nested domains with 27 km (Europe), 9 km (central Europe) and 3 km (Switzerland) resolutions. The concentrations of aerosol components are calculated for particle sizes smaller than 2.5 μm. The model’s capability to reproduce the aerosol concentrations is investigated by comparing the model results with the measurements performed during the same periods. In general, the modelled concentrations of inorganic aerosols agree quite well with the AMS measurements, whereas organic aerosols are underestimated. The chemical composition of aerosols in summer differs from that in winter. Both measurements and model predictions indicate that organic aerosols and particulate nitrate are the major components of the winter aerosol composition in Switzerland. In summer, organic aerosols dominate the aerosol composition and they are mostly secondary organic aerosols formed from the biogenic precursors. Recent measurements suggest that wood-burning emissions might contribute significantly to the aerosol concentrations, especially in winter. The lack of wood burning emissions in emission inventory could cause partly the underestimation of organic aerosols. The secondary organic aerosol (SOA) formation will be soon improved by using a new model version where oligomerization and SOA formation from isoprene and sesquiterpenes are implemented

    SEASONAL VARIABILITY OF AEROSOL COMPOSITION IN SWITZERLAND: A MODELLING STUDY

    Get PDF
    In this study, we applied the MM5/CAMx model system over Switzerland for winter and summer periods in 2006. The focus is on the formation and transport of aerosols and the contribution of various sources to the aerosol formation both in winter and summer seasons. Our model system uses three nested domains with 27 km (Europe), 9 km (central Europe) and 3 km (Switzerland) resolutions. The concentrations of aerosol components are calculated for particle sizes smaller than 2.5 μm. The model’s capability to reproduce the aerosol concentrations is investigated by comparing the model results with the measurements performed during the same periods. In general, the modelled concentrations of inorganic aerosols agree quite well with the AMS measurements, whereas organic aerosols are underestimated. The chemical composition of aerosols in summer differs from that in winter. Both measurements and model predictions indicate that organic aerosols and particulate nitrate are the major components of the winter aerosol composition in Switzerland. In summer, organic aerosols dominate the aerosol composition and they are mostly secondary organic aerosols formed from the biogenic precursors. Recent measurements suggest that wood-burning emissions might contribute significantly to the aerosol concentrations, especially in winter. The lack of wood burning emissions in emission inventory could cause partly the underestimation of organic aerosols. The secondary organic aerosol (SOA) formation will be soon improved by using a new model version where oligomerization and SOA formation from isoprene and sesquiterpenes are implemented

    Measured solid state and subcooled liquid vapour pressures of nitroaromatics using Knudsen effusion mass spectrometry

    Get PDF
    Knudsen effusion mass spectrometry (KEMS) was used to measure the solid state saturation vapour pressure (PsatS) of a range of atmospherically relevant nitroaromatic compounds over the temperature range from 298 to 328 K. The selection of species analysed contained a range of geometric isomers and differing functionalities, allowing for the impacts of these factors on saturation vapour pressure (Psat) to be probed. Three subsets of nitroaromatics were investigated: nitrophenols, nitrobenzaldehydes and nitrobenzoic acids. The PsatS values were converted to subcooled liquid saturation vapour pressure (PsatL) values using experimental enthalpy of fusion and melting point values measured using differential scanning calorimetry (DSC). The PsatL values were compared to those estimated by predictive techniques and, with a few exceptions, were found to be up to 7 orders of magnitude lower. The large differences between the estimated PsatL and the experimental values can be attributed to the predictive techniques not containing parameters to adequately account for functional group positioning around an aromatic ring, or the interactions between said groups. When comparing the experimental PsatS of the measured compounds, the ability to hydrogen bond (H bond) and the strength of the H bond formed appear to have the strongest influence on the magnitude of the Psat, with steric effects and molecular weight also being major factors. Comparisons were made between the KEMS system and data from diffusion-controlled evaporation rates of single particles in an electrodynamic balance (EDB). The KEMS and the EDB showed good agreement with each other for the compounds investigated

    The influence of the addition of isoprene on the volatility of particles formed from the photo-oxidation of anthropogenic–biogenic mixtures

    Get PDF
    In this study, we investigate the influence of isoprene on the volatility of secondary organic aerosol (SOA) formed during the photo-oxidation of mixtures of anthropogenic and biogenic precursors. The SOA particle volatility was quantified using two independent experimental techniques (using a thermal denuder and the Filter Inlet for Gas and Aerosols iodide high-resolution time-of-flight Chemical Ionisation Mass Spectrometer – FIGAERO-CIMS) in mixtures of α-pinene/isoprene, o-cresol/isoprene, and α-pinene/o-cresol/isoprene. Single-precursor experiments at various initial concentrations and results from previous α-pinene/o-cresol experiments were used as a reference. The oxidation of isoprene did not result in the formation of detectable SOA particle mass in single-precursor experiments. However, isoprene-derived products were identified in the mixed systems, likely due to the increase in the total absorptive mass. The addition of isoprene resulted in mixture-dependent influence on the SOA particle volatility. Isoprene made no major change to the volatility of α-pinene SOA particles, though changes in the SOA particle composition were observed and the volatility was reasonably predicted based on the additivity. Isoprene addition increased o-cresol SOA particle volatility by ∼5/15 % of the total mass/signal, respectively, indicating a potential to increase the overall volatility that cannot be predicted based on the additivity. The addition of isoprene to the α-pinene/o-cresol system (i.e. α-pinene/o-cresol/isoprene) resulted in slightly fewer volatile particles than those measured in the α-pinene/o-cresol systems. The measured volatility in the α-pinene/o-cresol/isoprene system had an ∼6 % higher low volatile organic compound (LVOC) mass/signal compared to that predicted assuming additivity with a correspondingly lower semi-volatile organic compound (SVOC) fraction. This suggests that any effects that could increase the SOA volatility from the addition of isoprene are likely outweighed by the formation of lower-volatility compounds in more complex anthropogenic–biogenic precursor mixtures. Detailed chemical composition measurements support the measured volatility distribution changes and showed an abundance of unique-to-the-mixture products appearing in all the mixed systems accounting for around 30 %–40 % of the total particle-phase signal. Our results demonstrate that the SOA particle volatility and its prediction can be affected by the interactions of the oxidized products in mixed-precursor systems, and further mechanistic understanding is required to improve their representation in chemical transport models.</p

    Relating hygroscopicity and composition of organic aerosol particulate matter

    Get PDF
    A hygroscopicity tandem differential mobility analyzer (HTDMA) was used to measure the water uptake (hygroscopicity) of secondary organic aerosol (SOA) formed during the chemical and photochemical oxidation of several organic precursors in a smog chamber. Electron ionization mass spectra of the non-refractory submicron aerosol were simultaneously determined with an aerosol mass spectrometer (AMS), and correlations between the two different signals were investigated. SOA hygroscopicity was found to strongly correlate with the relative abundance of the ion signal m/z 44 expressed as a fraction of total organic signal (f44). m/z 44 is due mostly to the ion fragment CO2+ for all types of SOA systems studied, and has been previously shown to strongly correlate with organic O/C for ambient and chamber OA. The analysis was also performed on ambient OA from two field experiments at the remote site Jungfraujoch, and the megacity Mexico City, where similar results were found. A simple empirical linear relation between the hygroscopicity of OA at subsaturated RH, as given by the hygroscopic growth factor (GF) or "κorg" parameter, and f44 was determined and is given by κorg=2.2×f44−0.13. This approximation can be further verified and refined as the database for AMS and HTDMA measurements is constantly being expanded around the world. The use of this approximation could introduce an important simplification in the parameterization of hygroscopicity of OA in atmospheric models, since f44 is correlated with the photochemical age of an air mass

    Relating hygroscopicity and composition of organic aerosol particulate matter

    Get PDF
    A hygroscopicity tandem differential mobility analyzer (HTDMA) was used to measure the water uptake (hygroscopicity) of secondary organic aerosol (SOA) formed during the chemical and photochemical oxidation of several organic precursors in a smog chamber. Electron ionization mass spectra of the non-refractory submicron aerosol were simultaneously determined with an aerosol mass spectrometer (AMS), and correlations between the two different signals were investigated. SOA hygroscopicity was found to strongly correlate with the relative abundance of the ion signal m/z 44 expressed as a fraction of total organic signal (f44). m/z 44 is due mostly to the ion fragment CO2+ for all types of SOA systems studied, and has been previously shown to strongly correlate with organic O/C for ambient and chamber OA. The analysis was also performed on ambient OA from two field experiments at the remote site Jungfraujoch, and the megacity Mexico City, where similar results were found. A simple empirical linear relation between the hygroscopicity of OA at subsaturated RH, as given by the hygroscopic growth factor (GF) or "ϰorg" parameter, and f44 was determined and is given by ϰorg = 2.2 × f44 − 0.13. This approximation can be further verified and refined as the database for AMS and HTDMA measurements is constantly being expanded around the world. The use of this approximation could introduce an important simplification in the parameterization of hygroscopicity of OA in atmospheric models, since f44 is correlated with the photochemical age of an air mass

    Direct evidence for coastal iodine particles from <i>Laminaria</i> macroalgae ? linkage to emissions of molecular iodine

    No full text
    International audienceRenewal of ultrafine aerosols in the marine boundary layer may lead to repopulation of the marine distribution and ultimately determine the concentration of cloud condensation nuclei (CCN). Thus the formation of nanometre-scale particles can lead to enhanced scattering of incoming radiation and a net cooling of the atmosphere. The recent demonstration of the chamber formation of new particles from the photolytic production of condensable iodine-containing compounds from diiodomethane (CH2I2), (O'Dowd et al., 2002; Kolb, 2002; Jimenez et al., 2003a; Burkholder and Ravishankara, 2003), provides an additional mechanism to the gas-to-particle conversion of sulphuric acid formed in the photo-oxidation of dimethylsulphide for marine aerosol repopulation. CH2I2 is emitted from seaweeds (Carpenter et al., 1999, 2000) and has been suggested as an initiator of particle formation. We demonstrate here for the first time that ultrafine iodine-containing particles are produced by intertidal macroalgae exposed to ambient levels of ozone. The particle composition is very similar both to those formed in the chamber photo-oxidation of diiodomethane and in the oxidation of molecular iodine by ozone. The particles formed in all three systems are similarly aspherical and behave alike when exposed to increased humidity environments. Direct coastal boundary layer observations of molecular iodine, ultrafine particle production and iodocarbons are reported. Using a newly measured molecular iodine photolysis rate, it is shown that, if atomic iodine is involved in the observed particle bursts, it is of the order of at least 1000 times more likely to result from molecular iodine photolysis than diiodomethane photolysis. A hypothesis for molecular iodine release from intertidal macroalgae is presented and the potential importance of macroalgal iodine particles in their contribution to CCN and global radiative forcing are discussed

    Measured Solid State and Sub-Cooled Liquid Vapour Pressures of Benzaldehydes Using Knudsen Effusion Mass Spectrometry

    Get PDF
    Benzaldehydes are components of atmospheric aerosol that are poorly represented in current vapour pressure predictive techniques. In this study the solid state ( and sub-cooled liquid saturation vapour pressures ) were measured over a range of temperatures (298–328 K) for a chemically diverse group of benzaldehydes. The selected benzaldehydes allowed for the effects of varied geometric isomers and functionalities on saturation vapour pressure () to be probed. was measured using Knudsen effusion mass spectrometry (KEMS) and was obtained via a sub-cooled correction utilising experimental enthalpy of fusion and melting point values measured using differential scanning calorimetry (DSC). The strength of the hydrogen bond (H-bond) was the most important factor for determining when a H-bond was present and the polarisability of the compound was the most important factor when a H-bond was not present. Typically compounds capable of hydrogen bonding had 1 to 2 orders of magnitude lower than those that could not H-bond. The were compared to estimated values using three different predictive techniques (Nannoolal et al. vapour pressure method, Myrdal and Yalkowsky method, and SIMPOL). The Nannoolal et al. vapour pressure method and the Myrdal and Yalkowsky method require the use of a boiling point method to predict . For the compounds in this study the Nannoolal et al. boiling point method showed the best performance. All three predictive techniques showed less than an order of magnitude error in on average, however more significant errors were within these methods. Such errors will have important implications for studies trying to ascertain the role of these compounds on aerosol growth and human health impacts. SIMPOL predicted the closest to the experimentally determined values

    The Effect of Varying Engine Conditions on Unregulated VOC Diesel Exhaust Emissions

    Get PDF
    Abstract. An extensive set of measurements were performed to investigate the effect of different engine conditions (i.e. load, speed, temperature, "driving scenarios") and emission control devices (with/without diesel oxidative catalyst, DOC) on the composition and abundance of unregulated exhaust gas emissions from a light-duty diesel engine. Exhaust emissions were introduced into an atmospheric chamber and measured using thermal desorption comprehensive two-dimensional gas chromatography coupled to a flame ionisation detector (TD-GC×GC-FID). In total, 16 individual and 8 groups of volatile organic compounds (VOCs) were measured in the exhaust gas, ranging from volatile to intermediate volatility. The total speciated VOC (∑SpVOC) emission rates varied significantly with different engine conditions, ranging from 70 to 9268 milligrams of VOC mass per kilogram of fuel burnt (mg kg-1). ∑SpVOC emission rates generally decreased with increasing engine load and temperature, and to a lesser degree, engine speed. The exhaust gas composition changed as a result of two main influencing factors, the DOC hydrocarbon (HC) removal efficiency and engine combustion efficiency. Increased DOC HC removal efficiency and engine combustion efficiency resulted in a greater percentage contribution of the C7 to C12 branched aliphatics and C7 to C12 n-alkanes, respectively, to the ∑SpVOC emission rate. The investigated DOC removed 46 ± 10 % of the ∑SpVOC emissions, with removal efficiencies of 83 ± 3 % for the single-ring aromatics and 39 ± 12 % for the aliphatics (branched and straight-chain). The DOC aliphatic removal efficiency generally decreased with increasing carbon chain length. The emission factors of n-nonane to n-tridecane were compared with on-road diesel emissions from a highway tunnel in Oakland California. Comparable emission factors were from experiments with relatively high engine loads and speeds, engine conditions which are consistent with the driving conditions of the on-road diesel vehicles. Emission factors from low engine loads and speeds (e.g. cold-start) showed no agreement with the on-road diesel emissions as expected, with the emission factors observed to be 2 to 8 times greater. To our knowledge, this is the first study which has explicitly discussed the effect of the DOC HC removal efficiency and combustion efficiency on the exhaust gas composition. With further work, compositional differences in exhaust gas emissions as a function of engine temperature, could be implemented into air-quality models, resulting in improved refinement and better understanding of diesel exhaust emissions on local air quality. </jats:p
    corecore